
1. Introduction
Mesoscale eddies, loosely defined as ocean currents on the spatial scales of tens to hundreds of kilome-
ters, are ubiquitous in the World Ocean (Chelton et al., 2007). Relentless stirring of water by these eddies 
leads to large-scale transport and redistribution of many dynamically and climatically important oceanic 
properties (“tracers”), including heat, salinity, and anthropogenic carbon (McWilliams, 2008). As a result, 
mesoscale eddies play a key role in determining the current and future states of the World Ocean and the 
Earth Climate, as manifested by strong sensitivity of ocean and climate simulations to the magnitude and 
distribution of eddy transports (Gnanadesikan et al., 2013; McWilliams, 2008; Wiebe & Weaver, 1999). At 
the same time, vast majority of ocean components in modern climate models either completely miss the 
eddies or only partially resolve them (Adcroft et al., 2019; Delworth et al., 2012; Williams et al., 2015). The 
eddy-induced transports in these models need to be additionally expressed (“parameterized”) in terms of 
known large-scale properties. This task requires a thorough study of eddy transport properties and their 
significance for tracer distributions. Below, we report on several new and important properties of the eddy 
transport using the framework of turbulent eddy diffusion, which is defined next.

Abstract Stirring of water by mesoscale currents (“eddies”) leads to large-scale transport of many 
important oceanic properties (“tracers”). These eddy-induced transports can be related to the large-scale 
tracer gradients, using the concept of turbulent diffusion. The concept is widely used to describe these 
transports in the real ocean and to represent them in climate models. This study focuses on the inherent 
complexity of the corresponding coefficient tensor (“K-tensor”) and its components, defined here in all 
its spatio-temporal complexity. Results demonstrate that this comprehensive K-tensor is space-, time-, 
direction- and tracer-dependent. Using numerical simulations with both idealized and comprehensive 
models of the Atlantic circulation, we show that these properties lead to upgradient eddy fluxes and the 
potential importance of all tensor components. The uncovered complexity of the eddy transports calls 
for reconsideration of how they are estimated in practice, included in the general circulation models and 
theoretically interpreted.

Plain Language Summary Mesoscale eddies, loosely defined as ocean currents on the spatial 
scales of tens to hundreds of kilometers, are ubiquitous in the World Ocean. Relentless stirring of water by 
these eddies leads to large-scale transport and redistribution of such important oceanic properties as heat, 
salinity, and anthropogenic carbon. The efficiency of this process has been conventionally described by 
turbulent (“eddy”) diffusion. Our study focuses on the inherent complexity of the corresponding transport 
tensor, defined here in all its complexity, without any space and/or time averaging. Results from this 
study demonstrate that this transport tensor varies with location and time. Using numerical simulations 
with both simplified and realistic models of the North Atlantic circulation, we show that these properties 
lead to eddy fluxes that act to sharpen tracer fronts, rather than smooth them. We also show that all 
components of the comprehensive tensor are potentially important for tracer distributions, and, therefore, 
cannot be generally neglected. Our results further demonstrate that the comprehensive diffusivity tensor 
depends on the tracer that it is derived from. The uncovered complexity of the eddy transports calls for 
reconsideration of how they are estimated in practice, included in the general circulation models and 
theoretically interpreted.
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By analogy between turbulent transport and molecular diffusion, the corresponding turbulent flux 
 , , ,F x y z t  of a tracer concentration c can be written as a linear function of the large-scale tracer gradient 

(Prandtl, 1925; Taylor, 1921; Vallis, 2017).

   F K c (1)

where K will be referred to as “K-tensor” (also called “transport tensor” in literature) and the angle brackets 
denote the large-scale component of a field. This flux-gradient relation, with some common simplifications, 
has been traditionally used in numerical models to parameterize turbulent fluxes due to the important 
unresolved part of the flow. The divergence of the eddy flux enters the full tracer equation in these models, 
along with advection by the large-scale flow
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Equation 2 can also be written for the large-scale tracer tendency  


c
t, which introduces additional terms 

because    uc uc . In this study, we tried both formulations and arrived at the same conclusions. For 
simplicity, we assume that the tracer is conservative, thus ignoring sources and sinks and focus only on 
dynamically passive tracers, thus assuming that the ocean currents are not affected by c.

Because of the joint effect of planetary rotation and ocean stratification, the stirring of water by mesoscale 
eddies is primarily along neutral density surfaces (Iselin, 1939; Mcdougall, 1987; McDougall et al., 2014), 
which can be approximated by isopycnal (constant density) surfaces in the interior ocean. This is particular-
ly convenient in this study, which uses isopycnal numerical models. Therefore, the focus here is on the later-
al material transport. The general K-tensor in a two-dimensional (2D) flow can be written as a 2 × 2 matrix

 
 

   
 

, , ,xx xy

yx yy

K K
K x y t

K K (3)

where the conventional Cartesian coordinates are used for convenience. Note that a pair of tracers is needed 
for a solution of Equation 1 and for that pair, the solution is exact and unique.

The seeming simplicity of the flux-gradient relation (Equation 1) hides the incredible complexity of the 
K-tensor. Only in purely homogeneous, stationary and isotropic turbulence are the off-diagonal tensor zero 
(Kxy = Kyx = 0) and the diagonal tensor elements are equal to each other (Kxx = Kyy). In realistic oceanic flows, 
all K-tensor elements are generally nonzero, distinct (i.e., the eddy-induced mixing is anisotropic) and vary 
in space and time (i.e., the mixing is inhomogeneous and nonstationary). Observation- and model-based 
estimates of the simplified eddy diffusivity exhibit strong dependence on depth, geographical location (Ab-
ernathey & Marshall, 2013; Cole et al., 2015; Canuto et al., 2019; Griesel et al., 2010; Groeskamp et al., 2020; 
Lumpkin et al., 2002; Marshall et al., 2006), and time (Busecke & Abernathey, 2019; Haigh et al., 2020). 
These estimates usually involve some spatio-temporal averaging and can be based on either drifter (“par-
ticle”) trajectories or tracer distributions. Both particle-based statistics (Griesel et al., 2010; Kamenkovich 
et al., 2009, 2015; McClean et al., 2002; O'Dwyer et al., 2000; Rypina et al., 2012; Sallee et al., 2008) and 
tracer-based estimates (Abernathey et al., 2013; Bachman et al., 2017, 2020; Eden, 2007; Haigh et al., 2020) 
also exhibit significant anisotropy. This anisotropy is important in the typical oceanic case of strong eddies 
embedded in relatively weak large-scale circulation (Kamenkovich et al., 2015).

The diffusion approach (Equation 1) is built on an inherent assumption that the K-tensor is unique for any 
given turbulent flow. However, some model estimates report significant sensitivity of a simplified K-tensor 
to the tracer field (Abernathey et al., 2013; Bachman et al., 2020, 2015; Eden & Greatbatch, 2009; Haigh 
et al., 2020). This sensitivity complicates interpretation of the K-tensor because even the exact solution of 
Equation 1 for one particular pair of tracers will lead to biases in F for another set.

The other serious complication is that F contains some large nondivergent (“rotational”) compo-
nent (Haigh et  al.,  2020; Jayne & Marotzke,  2002; Marshall & Shutts,  1981) that does not affect tracer  
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distribution, because only divergence of the eddy fluxes matters, but influences K in the flux-gradient rela-
tion (Equation 1). The rotational flux can be tracer-dependent (Bachman et al., 2015) and can lead to neg-
ative diffusivities (Marshall & Shutts, 1981). The separation of F into rotational and divergent components 
via the Helmholtz decomposition is, unfortunately, not unique and depends on the boundary conditions 
(Fox-Kemper et al., 2003; Jayne & Marotzke, 2002; Maddison et al., 2015; Roberts & Marshall, 2000), which 
are usually known for the total F but not for its rotational and divergent components, separately. The need 
to remove the rotational component thus leads to another source of ambiguity in estimating the K-tensor.

This study describes the complexity of the eddy-induced transports, using the K-tensor framework in its 
entire spatio-temporal complexity, assuming neither temporal nor zonal averaging. The analysis explores 
tensor’s dependence on tracer, importance of all its components, opposite signs of its diffusivities, and sig-
nificant spatial inhomogeneity and temporal variability that cannot be removed by commonly applied spa-
tio-temporal averaging. This complexity strongly suggests the need to expand the traditional flux-gradient 
relation of Equation 1 to include new functional and/or stochastic terms.

2. Numerical Simulations
Two types of simulations are used in this study to guarantee the robustness of conclusions. The first type 
is the idealized quasi geostrophic (QG) double-gyre flow. This flow contains all the essential elements of 
the mid-latitude North Atlantic or North Pacific: large-scale subpolar and subtropical gyres, separated by a 
coherent meandering jet, representing eastward extensions of the Gulf Stream and Kuroshio currents, and 
an ambient eddy field. The model is formulated in a square-box, flat-bottom ocean basin, which is a classi-
cal idealization that facilitates the analysis and numerical simulations (Haigh et al., 2020). The numerics 
employ the CABARET scheme (Karabasov et al., 2009) on a uniform Cartesian grid with 1025 by 1025 grid 
points and the grid spacing  Δ Δ 3.75x y   km. The model has three isopycnal/isoneutral layers. The 
length of the tracer simulations is 180 days, and the circulation was preliminary span up until the statistical 
equilibrium.

The second model is a comprehensive, general circulation model (GCM) of the entire Atlantic, used in the 
“offline” regime, which means that tracers are simulated using previously computed daily physical fields, 
thus, making the model computationally very efficient (Kamenkovich et al., 2017). The physical variables 
used in offline models are calculated in a separate “online” simulation with the hybrid coordinate ocean 
model (HYCOM) (Bleck, 2002; Chassignet et al., 2003), which uses isopycnal coordinates in the open ocean 
and below the mixed layer. HYCOM's coordinate system dynamically transitions to other coordinate types 
(sigma- and z-coordinates) to provide optimal resolution in the surface-mixed layer, in high-latitude un-
stratified regions, and near coasts. The online simulation has a global domain with 1/12° spatial resolution; 
the horizontal grid is rectilinear south of 47°N followed by an Arctic bipolar patch. The vertical grid has 41 
layers.

Both model solutions are initialized with 2D tracer configurations which initially are vertically uniform but 
have different horizontal profiles (see supporting information). The QG model is integrated for 180 days, 
while the GCM is used for several overlapping segments, 110 days each.

3. Tensor Calculation and Basic Properties
The definition of the large-scale circulation and large-scale tracer field is not unique, and the resulting 
K-tensor depends significantly on it. The mesoscale is not clearly separated from the large-scale in ocean 
models and observations (McWilliams,  2008), and an unambiguous definition of the eddies is missing. 
The large scales are often defined as long-term time mean (Vallis, 2017), although the utility of this defini-
tion is far from clear for transient tracers. Thus, a fundamental uncertainty in defining the eddies leads to 
uncertainty in defining the eddy diffusivity. This study defines mesoscale using spatial filtering, which is 
relevant to the task of spatial resolution of eddies in numerical models (Stanley et al., 2020). For example, 
the QG analysis in this study employs the low-pass spatial filtering <…> intended to remove scales shorter 
than 112.5 km (Rossby deformation radius is 40 km), while the GCM analysis uses a square filter width of 
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approximately 2° longitude. Large-scale GCM velocities are also averaged over 5 years for the most efficient 
separation of the large-scale circulation (Kamenkovich et al., 2017).

The flux-gradient relation can be solved exactly for any pair of independent tracers. In the QG simulations, 
we use 6 tracers that are initially linear (constant gradient) and 6 nonlinear tracers (15 independent pairs in 
each set). The linear tracers are of the form  ax by , which means solving Equation 1 must produce a 
unique diffusivity tensor if the rotational component is properly removed. This is because any linear tracer 
can be expressed as a linear combination of only 2 independent tracers. In the GCM simulations, we use 
four independent tracers (six tracer pairs).

The rotational component is removed from each tracer flux, using the Helmholtz decomposition (Lau & 
Wallace, 1979):

       2 2Φ, ΨF F 

 div rotF F F 

    div rotΦ, ΨF F (4)

In the above equations, Φ is the potential that corresponds to the divergent flux component divF  where-
as Ψ is the streamfunction that corresponds to the rotational component rotF . In the QG simulations, we 
adopt the approach of Maddison et al.  (2015) and set Φ 0 at the lateral boundaries, which minimizes 
the magnitude of divF . GCM simulations have open boundaries in the north and south, and a different ap-
proach is used. We chose to use the optimization technique with Tikhonov regularization (Li et al., 2006), 
which minimizes the opposing nonrotational and nondivergent components in divF  and   divF F . Note that 
    divF F  regardless of the boundary conditions used in the Helmholtz decomposition, although the 
K-tensor is derived from divF  and, thus, is highly sensitive to the choice of the boundary conditions.

The K-tensor can be decomposed into the symmetric and antisymmetric components with distinct physical 
interpretations (Griffies, 1998; Plumb & Mahlman, 1987):
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The symmetric sK  and antisymmetric aK  parts are traditionally referred to as the “diffusion tensor” and 
“advection tensor,” respectively. The diffusion tensor can be conveniently diagonalized by rotating the local 
coordinate through an angle θ (Rypina et al., 2012; Kamenkovich et al., 2015).




 
   
 

1
s

2

0
0

K (6)

The angle θ defines the direction of the maximal tracer diffusivity, and the first eigenvalue 1 is the 
eddy diffusivity in this direction. The second eigenvalue 2 corresponds to the diffusivity in the direc-
tion perpendicular to the maximal one. Both eigenvalues are real and will be referred to as diffusivities 
in this study. The advection tensor corresponds to advection of tracers by nondivergent eddy-induced 
velocities.

When the eddy-induced stirring (K-tensor) is isotropic and homogeneous, these two components of the 
full tensor correspond to the divergent (zero curl and nonzero divergence) and rotational (zero divergence 
and nonzero curl) components,   sK c  and   aK c , respectively. Since the rotational component does 
not affect tracer distributions, only sK  needs to be calculated in this case. In a more general case like ours, 
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both sK  and aK  are important, and the antisymmetric part has nonzero divergence for the inhomogeneous 
tensor:         a , 0K c J A c . Moreover, it is possible to show that the curl of the symmetric part is also 
nonzero,      0sK c , if sK  is anisotropic ( xx yyK K ) or inhomogeneous. For example, our QG estimates 
show that the r.m.s. of the divergence of  sK c  and  aK c  are both 2.5 × 10−9 s−1 (tracer is unitless), and 
the curl of these components is 6.5 × 103 s−1 and 6.7 × 103 s−1, respectively. Because the rotational compo-
nent is exactly zero in the full divF , the rotational components in the symmetric and antisymmetric parts 
cancel each other.

3.1. Polarity and Time Dependence

An intriguing new feature of the comprehensive sK  is the persistence of pairs of positive and negative 
diffusivities (eigenvalues) 1 and 2 (Figures 1 and 2), which we will refer to as “polarity.” Many previous 
studies excluded negative diffusivities, either by using asymptotic estimates based on particle trajectories 
(Berloff et al., 2002; Kamenkovich et al., 2015; Rypina et al., 2012) or by explicitly constraining diffusivities 
to be non-negative (Bachman et al., 2020). Polar diffusivities imply that the tracer concentration anomalies 
are being stretched in one direction (direction of positive diffusivity, defined by the angle θ) and squeezed 
in the direction normal to that (direction of negative diffusivity), leading to transient filamentation of the 
tracer field. Moreover, the polarity, which is ubiquitous in both QG and GCM solutions, is a robust feature 
of the instantaneous flow and is observed regardless of whether and how the rotational component of F is 
removed.

All components of the comprehensive tensor have significant time dependence, with the standard devia-
tions comparable with and exceeding the corresponding time-mean values (Figure 3). The uncovered time 
dependence has important implications not only for transient tracer behavior, but also for time-mean tracer 
structure. The latter point can be illustrated by the time-average eddy flux divF . To see this, we can write the 
time average of Equation 1 in two different ways:

           div , ,F K c K c K K K c c c 

or

   
div ,F K c (7)

where K  is the K-tensor defined from the time-mean eddy fluxes and tracer gradients. The above relation 
implies that (i) K  can be at least as important as K , as suggested in Figure 3; and (ii) K  is different from K . 
Both properties are confirmed by our calculations. The most practical approach for the parametrization is 
then unclear. Obtaining accurate estimates of time-dependent   , ,K x y t  is problematic in practice, whereas 
using K  can distort the important variability in divF  and the simulated tracer field.

Due to the nonstationary nature of sK , its eigenvalues (diffusivities) and the corresponding angle θ 
both change in time. Although the polarity is reduced in sK  and sK , it continues to be observed even 
in these fields (not shown), which implies that eddies lead to persistent filamentation. As the sharp-
ening of tracer gradients cannot continue forever, the effects of eddies have to be eventually balanced 
by the large-scale advection and small-scale diffusion, and persistent upgradient tracer fluxes are in-
deed possible under certain conditions (Wilson & Williams, 2006). Persistent upgradient eddy poten-
tial vorticity fluxes, which correspond to negative diffusivity in the cross-stream direction have been 
reported in the eastward extensions of the Kuroshio (Waterman et al., 2011; Waterman & Jayne, 2011) 
and Gulf Stream (Shevchenko & Berloff, 2015); these studies, however, did not report the K-tensor and 
the sign of the along-flow diffusivity. Another possibility is that negative eigenvalues are associated 
with nondivergent, rotational component of sK c. Regardless of the origin and interpretation of the 
polarity, neglecting the negative values will lead to biases in the instantaneous eddy fluxes and tracer 
distributions. Although these biases can be partially averaged out over time, the implications for tracer 
variability need to be carefully assessed.
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3.2. Dependence on Tracers

Another unexpected property of the diffusion tensor sK  is its dependence on the tracer field, which implies 
that  , ,sK x y t  is not uniquely determined by the flow and exists for each tracer pair separately. To illustrate 
this property in our study, we consider the entire ensemble of the diffusivities 1, calculated among all pos-

sible pairs of tracers. The resultant ensemble standard deviation  S  exceeds the ensemble mean in most of 
the domain for both the QG and GCM simulations (Figures 4 and 5). Even more significantly, the spread in 
the values of the diffusive-flux divergence    sK c  is large (not shown).

The rotational component can be naturally suspected of being the cause of the above nonuniqueness of 

the K-tensor. Nevertheless, our results demonstrate that the nonuniqueness (as measured by   S ) is not 
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Figure 1. Results of the QG simulations at day 183: (a) tracer anomaly      , , , ,0c c x y t c x y ; (b) divergence of the tracer flux (tracer units times 10−16 s−1); 
(c)-(d) eigenvalues of sK and (e)-(f) off-diagonal terms of the sK and aK (units are 104 m2 s−1). Axis units are km.
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Figure 2. Results of the GCM simulations, layer 17 (depth of approximately 110-140 m): (a) tracer anomaly 
     , , , ,0c c x y t c x y at day 350, year 1 (tracer is unitless); (b) divergence of the tracer flux (units are s−1) averaged 

over days 341–350 of year 1, smoothed for presentation purposes; (c)-(d) eigenvalues of sK and (e)-(f) off-diagonal 
terms of sK and aK (units are m2 s−1), derived from the eddy fluxes and tracer gradients averaged over days 341–350 
of year 1. Note large values in the tropics due to weak tracer gradients and, possibly, long Rossby deformation radius. 
Regions near the open boundaries, where the tracer concentrations are initially set to zero are masked. Axes are degrees 
longitude/latitude.
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significantly increased when the rotational component is added for a general set of tracers:  S is similar in 
magnitude for F and divF  in both the QG and GCM simulations (Figures 4c and 4d and Figures 5a and 5b). 
To confirm that we can indeed remove the rotational component, we repeat the above analysis for the ini-
tially linear (constant gradient) tracers in the QG simulations, which must lead to the same diffusivity from 

divF  for all tracer pairs (see supporting information). Indeed, in this case  S  for divF  is orders of magnitude 
smaller than the same quantity for F. (Figures 4a and 4b). We conclude that the presence of the rotational 
component cannot be the main cause of nonuniqueness.

4. Implications for Eddy Parameterization and Diffusivity Estimates
Using the exact solution for  , ,K x y t  from (Equation 1) would lead to an accurate representation of the 
eddy-flux divergence for the given tracer pair, and regardless of how and whether the rotational component 
is removed. However, this is not how the problem of parameterization is formulated. An ultimate goal of 
the diffusion-based description of the eddy-induced transports is parameterization of  , ,K x y t  in terms of 
large-scale currents and stratification, that is, arrival at some generalized “turbulence closure.” The corre-
sponding approximate tensor   , ,pK K x y t  is intended to reproduce the most important effects of eddies 
on the large-scale tracer fields, without explicitly resolving the mesoscale. The uncovered complexity of 
the K-tensor implies that the parameterized eddy flux divergence    pK c  will inevitably contain biases 
with respect to   F, but the significance of these biases for tracer distribution remains to be studied. These 
biases can be particularly hard to control, since the diffusive flux will have a large rotational component 
which affects the K-tensor estimates, according to our analysis. Since an exact match between pK  and K is 
practically impossible, it is important to estimate what properties of the K-tensor are most important for 
tracer distribution. This study describes several examples of such properties.
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Figure 3. Temporal variability in the eigenvalues (diffusivities) 1 and 2 of the diffusion tensor Ks in the QG 
simulations over the period of 183 days. Panels (a-b) show the time-mean values, panels (c-d) show the standard 
deviations. Time-means of eigenvalues are over 183 days. Axes are km.
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Figure 4. Nonuniqueness of the K-tensor (tracer dependence) in the QG simulations (day 183), for the ensemble of 15 
tracer pairs. It is shown as the ensemble standard deviation  S  divided by the ensemble mean for the first eigenvalue 1

, calculated for divF  (left column) and F (right column): (a-b) Linear tracers in the QG model; (c-d) Nonlinear tracers in 
the QG model. Axes are km.

Figure 5. Nonuniqueness (tracer dependence) of the K-tensor in the HYbrid Coordinate Ocean Model (HYCOM) 
simulations, for the ensemble of six tracer pairs. It is shown as the ensemble standard deviation S(λ) divided by the 
ensemble mean for the first eigenvalue 1, calculated for divF  (left column) and F (right column). The tensor is derived from 
the eddy fluxes and tracer gradients averaged over days 341–350 of year 1, layer 17. Axes are degrees in longitude/latitude.
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The K-tensor depends on the flow decomposition (definition of the large-scale <…>), which is loosely de-
fined in most cases. This study defines mesoscale based on spatial scales, which is more directly relevant to 
the issue of its parameterization in numerical models. The spatial filter characteristics cannot, however, be 
easily derived from model resolution alone, since it is unclear to what extent different dynamical scales are 
actually resolved. The K-tensor is also nonstationary, and a meaningful definition of pK  will depend on the 
time scales of large-scale tracer variability, potentially emerging from the state dependence in pK  (Adcroft 
et al., 2019; Stanley et al., 2020). The analysis of the dominant spatial and temporal scales will need to be 
carried out in each particular case. Negative diffusivities (eigenvalues of the diffusion tensor) and the poten-
tial importance of all tensor components dramatically complicate the definition of the closure. These nega-
tive diffusivities are, however, transient, and the corresponding direction of spreading constantly changes in 
time. The importance of this variability needs to be assessed. In addition, the effects of negative eigenvalues 
can potentially be fully compensated by the flux resulting from the advection tensor, which is divergent and, 
thus, also plays a role in tracer distribution. Although the K-tensor polarity reflects the actual properties of 
eddy fluxes, negative diffusivity in numerical simulation should be implemented with caution, in order to 
avoid singularities. Observation-based estimates, on the other hand, present additional challenges. Given 
the discovered complexity, obtaining accurate estimates of K from drifter and float trajectories (Lagrangian 
observations) appears highly problematic, because these asymptotic and spatially nonlocal methods will 
not be able to accurately capture the spatial and temporal variability of the K-tensor, as well as its negative 
eigenvalues and its advective component.

Finally, the comprehensive K-tensor is a function of the tracer field, formally violating assumptions of the 
classical, tracer-independent flux-gradient relation. A practical approach to this problem is to use multi-
tracer ensemble-averaged estimates of sK  (Abernathey et al., 2013; Bachman et al., 2017, 2020), but the 
corresponding and unavoidable biases for each given tracer pair remain to be assessed and understood. 
Although the nonuniqueness may be potentially alleviated by using long-term time averages, the errors in 
instantaneous parameterized eddy fluxes can lead to large biases in simulations of such important transient 
tracers as heat anomalies and anthropogenic carbon.

Negative diffusivities and tracer dependence clearly illustrate the fact that the stirring driven by mesoscale 
currents is dramatically more complex than the molecular diffusion, which is used to motivate the flux-gra-
dient representation. An alternative solution is to expand the traditional flux-gradient representation of the 
eddy flux by adding new, nondiffusive and/or nongradient terms. Such expansion can involve terms that 
explicitly depend on either the tracer concentration or its curvature, as well as purely stochastic compo-
nents. Another alternative is to represent K-tensor as a stochastic process, as it has been done in the past for 
other transport parameters (Berloff & McWilliams, 2003; Grooms, 2016). Finally, approximating eddy flux 
divergence, instead of eddy fluxes themselves, will help to avoid ambiguity associated with the presence of 
the rotational component.

Since the most important properties and aspects of pK  remain to be identified, we do not yet know to what 
extent they are affected by the full tensor properties described in this study. Although it is tempting to conclude 
that only the direct resolution of the mesoscale can lead to accurate tracer simulations, we must realize that 
the task of its parameterization will remain relevant for some time. The presented complexity and nonunique-
ness of the K-tensor suggest that the flux-gradient relationship is not suitable for representing eddy-induced 
fluxes in terms of large-scale properties and alternative types of parameterizations may be needed.

Data Availability Statement
Model data used to produce figures in this study are available from https://doi.org/10.17604/a1q6-d035.
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